Publications

– Puig-Tintó, M., Pazos, I., Betancur, L., Hernández, AC., and Gallego, O. (2023) “TRAPPIII requires Drs2 binding to transport Atg9 vesicles at cold temperatures” Autophagy, DOI: 10.1080/15548627.2023.2233365

– Mirela Bota, P., Hernandez, AC, Segura, J., Gallego, O., Oliva, B. and Fernandez-Fuentes, N. (2023) “CM2D3: Furnishing the human interactome with structural models of protein complexes derived by comparative modeling and docking” J. Mol. Bio. https://doi.org/10.1016/j.jmb.2023.168055

– Pazos, I., Puig-Tintó, M., Betancur, L., Cordero, J., Jiménez-Menéndez, N., Abella, M., Hernández, AC., Duran, A.G., Adachi-Fernández, E., Belmonte-Mateos, C., Sabido-Bozo, S., Tosi, S., Nezu, A., Oliva, B., Colombelli, J., Graham, T.R., Yoshimori, T., Muñiz, M., Hamasaki, M. and Gallego, O. (2023) “The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast” EMBO reports, e56134.

– Hernandez, A.C., Oliva, B., Devos, D. P., and Gallego, O. (2022) “Live-Cell Structural Biology to Solve Molecular Mechanisms: Structural Dynamics in the Exocyst Function” Protein Interactions: The Molecular Basis of Interactomics, 127-142, (Volkhard, H. and Olga V., K. ed.) ISBN: 978-3-527-34864-0, Wiley-VCH, Weinheim.

– Fornes, O., Meseguer, A., Aguirre-Plans, J., Gohl, P., Bota, PM., MolinaFernández, R., Bonet, J., Hernandez, AC., Pegenaute, F., Gallego, O., Fernandez-Fuentes, N. and Oliva, B. (2022) “Structure-based learning to model complex protein-DNA interactions and transcription-factor co-operativity in cisregulatory elements” bioRxiv. doi: https://doi.org/10.1101/2022.04.17.488557.

– Irastorza-Azcarate, I., Castaño-Díez, D., Devos, D. P., and Gallego, O., (2019) “Live-cell structural biology to solve biological mechanisms: the case of the exocyst” Structure 27, 886-892.

– Torreira, E., Louro, J.A., Pazos, I., González-Polo, N., Gil-Carton, D., Duran, A.G., Tosi, S., Gallego, O., Calvo, O., Fernández-Tornero, C. (2017) «The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription» eLife, 10.7554/eLife.20832.

– Picco, A., Irastorza-Azcarate, I., Specht, T., Böke, D., Pazos, I., Rivier-Cordey, A.-S., Devos, D.P., Kaksonen, M., Gallego, O. (2017) «The in vivo architecture of the exocyst provides structural basis for exocytosis.» Cell 168, 400–412.e18.

– Gallego, O., Specht, T., Brach, T., Kumar, A., Gavin, A-C., Kaksonen, M. (2013) “Detection and characterization of protein interactions in vivo by a simple live-cell imaging method.” PLoS ONE, 8(5):e62195.

– Ruiz F.X., Porté S., Gallego O., Moro A., Ardèvol A., Del Río A., Rovira C., Farrés J., Parés X. (2011) “Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily.” Biochem. J. 440, 335-344.

– Ruiz F.X., Moro A., Gallego O., Ardèvol A., Rovira C., Petrash J.M., Parés X., Farrés J. (2011) “Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde.” Chem Biol Interact. 191, 199-205.

– Gallego O., Betts M.J., Gvozdenovic-Jeremic J., Maeda K., Matetzki C., Aguilar-Gurrieri C., Beltran-Alvarez P., Bonn S., Fernández-Tornero C., Jensen L.J., Kuhn M., Trott J., Rybin V., Müller C.W., Bork P., Kaksonen M., Russell R.B., Gavin A.C. (2010) “A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae.” Mol Syst Biol. 6:430.

– Ruiz F.X., Gallego O., Ardèvol A., Moro A., Domínguez M., Alvarez S., Alvarez R., de Lera A.R., Rovira C., Fita I., Parés X., Farrés J. (2009) “Aldo-keto reductases from the AKR1B subfamily: Retinoid specificity and control of cellular retinoic acid levels.” Chem Biol Interact. 178, 171-177.

– Charbonnier S., Gallego O., Gavin AC. (2008) “The social network of a cell: Recent advances in interactome mapping.” Biotechnol Annu Rev. 14,1-28.

– Gallego, O. and Gavin, A-C. (2007) “New perspectives on an old disease: proteomics in cancer research.” Genome Biol. 8, 303

– Gallego, O., Ruíz, F.X., Ardèvol, A., Domínguez, M., Alvarez, R., de Lera, A,R., Rovira, C., Farrés, J., Fita, I. and Parés, X. (2007) Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. Proc Natl Acad Sci U S A. 104, 20764-9.

– Gallego, O., Belyaeva, O.V., Porté, S., Ruíz, F.X., Stetsenko, A.V., Shabrova, Kostereva, N.V., Mrtras, S., Parés, X., Kedishvili, N.Y. and Farrés, J. (2007) “Kinetic Analysis of SDRs, ADHs and AKRs toward Free and CRBPIbound Retinoids: Effect of Tween-80 and Microsomal Membranes” Enzymology and Molecular Biology of Carbonyl Metabolism 13, 144-151 (Weiner, H., ed.), Purdue University Press, USA.

– Hellgren, M., Stromberg, P., Gallego, O., Martras, S., Farres, J., Persson, B., Pares, X., Hoog, J.O. (2007) “Alcohol dehydrogenase 2 is a major hepatic enzyme for human retinol metabolism.” Cell Mol Life Sci. 64, 498-505.

– Gallego, O., Belyaeva, O.V., Porté, S., Ruíz, F.X., Stetsenko, A.V., Shabrova, E.V., Farrés, J., Parés, X. & Kedishvili, N.Y. (2006) Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/ reductases, and aldo-keto reductases with retinoids. Biochem. J. 399, 1001-109.

– Porté, S., Martras, S., Martínez, S. E., Alvarez, R., Gallego, O., Domínguez, M., Duester, G., de Lera, A. R., Farrés, J. & Parés, X. (2005) Activity of alcohol dehydrogenase with 11-cis-retinoids and distribution of ADH4 in ocular tissues. Enzymology and Molecular Biology of Carbonyl Metabolism 12, 200-207 (Weiner, H., ed.), Purdue University Press, USA.

– Martras, S., Alvarez, R., Gallego, O., Domínguez, M., de Lera, A. R., Farrés, J. & Parés, X. (2004) Kinetics of human alcohol dehydrogenase with ring-oxidized retinoids. Effect of Tween 80. Arch. Biochem. Biophys., 430, 210 – 217.

– Martras, S., Alvarez, R., Martínez, S.E., Torres, D., Gallego, O., Porté, S., Duester, G., Farrés, J., de Lera, A. R. & Parés, X. (2004) The specificity of alcohol dehydrogenase with cis-retinoids. Activity with 11-cis-retinol and localitzation in retina. Eur. J. Biochem., 271, 1660 – 1670.

– Crosas, B., Hyndman, D.J., Gallego, O., Martras, S., Parés, X., Flynn, T.G. & Farrés, J. (2003) Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Biochemical Journal 373, 973 – 979.